- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Adib, Fadel (2)
-
Rademacher, Jack (2)
-
Akbar, Waleed (1)
-
Allam, Ahmed (1)
-
Boroushaki, Tara (1)
-
Eid, Aline (1)
-
Naeem, Nazish (1)
-
Patnaik, Ritik (1)
-
Wang, Purui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present the design, implementation, and evaluation of SeaScan, an energy-efficient camera for 3D imaging of underwater environments. At the core of SeaScan’s design is a trinocular lensing system, which employs three ultra-lowpower monochromatic image sensors to reconstruct color images. Each of the sensors is equipped with a different filter (red, green, and blue) for color capture. The design introduces multiple innovations to enable reconstructing 3D color images from the captured monochromatic ones. This includes an ML-based cross-color alignment architecture to combine the monochromatic images. It also includes a cross-refractive compensation technique that overcomes the distortion of the wide-angle imaging of the low-power CMOS sensors in underwater environments.We built an end-to-end prototype of SeaScan, including color filter integration, 3D reconstruction, compression, and underwater backscatter communication. Our evaluation in real-world underwater environments demonstrates that SeaScan can capture underwater color images with as little as 23.6 mJ, which represents 37× reduction in energy consumption in comparison to the lowest-energy state-of-the-art underwater imaging system.We also report qualitative and quantitative evaluation of SeaScan’s color reconstruction and demonstrate its success in comparison to multiple potential alternative techniques (both geometric and ML-based) in the literature. SeaScan’s ability to image underwater environments at such low energy opens up important applications in long-term monitoring for ocean climate change, seafood production, and scientific discovery.more » « lessFree, publicly-accessible full text available December 4, 2025
-
Eid, Aline; Rademacher, Jack; Akbar, Waleed; Wang, Purui; Allam, Ahmed; Adib, Fadel (, ACM)We present the design, implementation, and evaluation of Van Atta Acoustic Backscatter (VAB), a technology that enables long-range, ultra-low-power networking in underwater environments. At the core of VAB is a novel, scalable underwater backscatter architecture that bridges recent advances in RF backscatter (Van Atta architectures) with ultra-low-power underwater acoustic networks. Our design introduces multiple innovations across the networking stack, which enable it to overcome unique challenges that arise from the electro-mechanical properties of underwater backscatter and the challenging nature of low-power underwater acoustic channels. We implemented our design in an end-to-end system, and evaluated it in over 1,500 real-world experimental trials in a river and the ocean. Our evaluation in stationary setups demonstrates that VAB achieves a communication range that exceeds 300m in round trip backscatter across orientations (at BER of 10−3). We compared our design head-to-head with past state-of-the-art systems, demonstrating a 15× improvement in communication range at the same throughput and power. By realizing hundreds of meters of range in underwater backscatter, this paper presents the first practical system capable of coastal monitoring applications. Finally, our evaluation represents the first experimental validation of underwater backscatter in the ocean.more » « less
An official website of the United States government
